Search results for "Teoretisk kemi"

showing 3 items of 3 documents

Molecular Basis of the Chemiluminescence Mechanism of Luminol

2019

Light emission from luminol is probably one of the most popular chemiluminescence reactions due to its use in forensic science, and has recently displayed promising applications for the treatment of cancer in deep tissues. The mechanism is, however, very complex and distinct possibilities have been proposed. By efficiently combining DFT and CASPT2 methodologies, the chemiluminescence mechanism has been studied in three steps: 1)luminol oxygenation to generate the chemiluminophore, 2)a chemiexcitation step, and 3)generation of the light emitter. The findings demonstrate that the luminol double-deprotonated dianion activates molecular oxygen, diazaquinone is not formed, and the chemiluminopho…

CASPT2010405 organic chemistryChemistryOrganic ChemistryGeneral Chemistryelectron transfer010402 general chemistryPhotochemistry01 natural scienceschemiluminescenceCatalysis0104 chemical sciencesLuminollaw.inventionreaction mechanismschemistry.chemical_compoundlawdensity functional calculationsTeoretisk kemicancerLight emissionTheoretical ChemistryChemiluminescenceChemistry – A European Journal
researchProduct

Theoretical study of the dark photochemistry of 1,3-butadiene via the chemiexcitation of Dewar dioxetane.

2015

Excited-state chemistry is usually ascribed to photo-induced processes, such as fluorescence, phosphorescence, and photochemistry, or to bio-and chemiluminescence, in which light emission originates from a chemical reaction. A third class of excited-state chemistry is, however, possible. It corresponds to the photochemical phenomena produced by chemienergizing certain chemical groups without light - chemiexcitation. By studying Dewar dioxetane, which can be viewed as the combination of 1,2-dioxetane and 1,3-butadiene, we show here how the photo-isomerization channel of 1,3-butadiene can be reached at a later stage after the thermal decomposition of the dioxetane moiety. Multi-reference mult…

General Physics and AstronomyPhotochemistryChemical reactionQuantum chemistryDioxetaneReaction coordinatechemistry.chemical_compoundchemistryExcited stateTeoretisk kemiMoietyLight emissionPhysical and Theoretical ChemistryPhosphorescenceTheoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

Proton/Hydrogen Transfer Mechanisms in the Guanine–Cytosine Base Pair: Photostability and Tautomerism

2013

Proton/hydrogen-transfer processes have been broadly studied in the past 50 years to explain the photostability and the spontaneous tautomerism in the DNA base pairs. In the present study, the CASSCF/CASPT2 methodology is used to map the two-dimensional potential energy surfaces along the stretched NH reaction coordinates of the guanine–cytosine (GC) base pair. Concerted and stepwise pathways are explored initially in vacuo, and three mechanisms are studied: the stepwise double proton transfer, the stepwise double hydrogen transfer, and the concerted double proton transfer. The results are consistent with previous findings related to the photostability of the GC base pair, and a new contrib…

Proton010405 organic chemistryHydrogen bondBase pairGuanineAb initioNanotechnologyDNA010402 general chemistry01 natural sciencesTautomer0104 chemical sciencesComputer Science Applicationschemistry.chemical_compoundchemistryComputational chemistryTeoretisk kemiTheoretical chemistryPhysical and Theoretical ChemistryTheoretical ChemistryCytosineJournal of Chemical Theory and Computation
researchProduct